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ABSTRACT: Controlling the phase, crystallinity, and microstructure and
fabricating a facet isotype heterojunction with a proscribed reduction—
oxidation facet exposure factor have a strong constructive effect toward
photoexciton separation and migration. In this respect, here diverse synthetic
courses such as calcination (BiVO,-C), hydrothermal treatment (BiVO,-H),
and a reflux method (BiVO,-R) are introduced to fabricate various hierarchical
morphologies of highly crystalline monoclinic scheelite bismuth vanadate
(BiVO,) with different redox facet exposure factors that have been well
established by X-ray diffraction, Fourier transform infrared spectroscopy, field
emission scanning electron microscopy, and transmission electron microscopy
analysis. The analytical and experimental investigations revealed superior
photocatalytic upshots of a BiVO,-R {040/110} facet isotype heterojunction
toward levofloxacin (LVF) detoxification (71.2%, 120 min) and the water
oxidation reaction (530.6 wumol, 120 min) relative to BiVO,-C (42.3%, 434.2 umol) and BiVO,-H (60.4%, 494.8 umol).
Accordingly, the BiVO,-R {040/110} facet isotype heterojunction (145.6 pA/cm’) expressed an enhanced photocurrent in
comparison to pristine BiVO,-C (75.5 yA/cm?) and BiVO,-H (113.1 yA/cm?). The superior photocatalytic redox efficiency was
attributed to well-exposed {040} reduction and {110} oxidation facets and a superior relative {040} facet exposure factor provoking
an enhanced charge carrier separation over a BiVO,-R {040/110} facet isotype heterojunction. The spatial exciton separation over
the BiVO,-R sample was well established by numerous analytical and experimental investigations. The effectual associations among
physicochemical, photoelectrochemical properties, {040/110} facet isotype heterojunction, relative reduction—oxidation facet
exposure factor, and photocatalytic performances of fabricated BiVO, microstructures were well established, and the upshots of this
research were discussed finely. The research signifies an effectual direction for morphology and relative reduction—oxidation facet
exposure factor controlled fabrication of facet isotype heterojunction based materials for superior photocatalysis and could be
advantageous for supplementary research areas.

Article Recommendations

Visible light
420 nm

*

1. INTRODUCTION

Challenging the current dilemma of energy-environmental
cataclysm, redox course driven semiconductor-based photo-
catalysis has emerged as an eco-efficient and sustainable
resolution."”” Despite the enormous progress that has been
made, surface incompatibility provoked rapid exciton recombi-
nation suppresses the expected redox efliciency of traditional
heterojunction materials. Moreover, to triumph over the
inefficiencies of traditional heterojunctions, n—n isotype
heterojunctions between materials with the same charge carrier
such as ZnWO,/Bi,WOy, BiPO,/Bi,WOy, g-C3N,/TiO,, and
Bi; 64Mo0 3605455/Bi;M0Og etc. and crystal phase isotype
heterojunctions between different crystal phases of a pristine
material such as a-Ga,0;/#-Ga,0;, CN-T/CN-U, GCN/
CCN, and TiO,(A)/TiO,(R) have also been introduced.’”"°
Captivatingly, an InS;/BiVO, n—n isotype and an M-BiVO,/
T-BiVO, crystal phase isotype heterojunction toward antibiotic
detoxification and water oxidation were successfully reported
by our group.'"'” Superior interfacial compatibilities and a
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space charge accumulation/depletion region promoted exciton
separation over these heterojunction heighten the photo redox
efficiency. Nevertheless, to broaden the research further, a facet
isotype heterojunction was introduced over different exposed
reduction—oxidation facets of pristine semiconducting materi-
als. Various widely reported materials with crystal facet
engineering include TiO,, BiOCl, BiVO,, NaTaO;, ZnFe,0,,
CdS, BiOIO;, etc.””™>* The thermodynamic separation of
excitons over the active facets facilitates the overall redox
process.
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From this perspective, the monoclinic scheelite BiVO, has
evolved as an appealing metal oxide photocatalytic material for
a crystal facet engineered isotype heterojunction, as its
efficiency has been reported to be greatly exaggerated by
alteration of the microstructure.'®'”**™** The controlled
exposure of oxidation {110} and reduction facets {040} of
monoclinic scheelite BiVO, adds constructive effects toward
exciton separation over the respective energy band edges of an
inbuilt facet isotype heterojunction.'®™"**’73! Moreover, a
narrow band gap of 2.3—2.4 eV, superior photostability,
nontoxicity, and superior Big,—O,, hybrid orbital aggravated
visible light absorption ability are the reasonable key factors
making the monoclinic scheelite BiVO, a desirable alternative
to conventional UV-active titania (TiO,) and tetragonal
scheelite/zircon phase BiVO, based photocatalysts in the
progressive research field."*'" Furthermore, Bi—O bond
distortion provoked enhanced exciton separation and the
destructive effect of [VO,] tetrahedron provoked superior
water oxidation tendency of the monoclinic scheelite BiVO,
attest to its novelty.' ">’

Nevertheless, research exposing the effective involvement of
physicochemical features, electrochemical properties, {040/
110} crystal facet isotype heterojunctions, and the relative
exposure factors of reduction—oxidation facets of BiVO,
toward superior photocatalytic levofloxacin detoxification and
water oxidation has been unavailable so far. Accounting for the
above scenario herein, we fabricated various hierarchical
morphologies of highly crystalline monoclinic scheelite
BiVO, with varying redox facet exposure factors via diverse
synthetic routes such as calcination (BiVO,-C), hydrothermal
treatment (BiVO,-H), and a reflux method (BiVO,-R) and
investigated the efficiencies of the fabricated microstructure
toward levofloxacin detoxification and the water oxidation
reaction. The crystallographic features contributing toward
redox efficiency have been well determined by X-ray diffraction
(XRD) analysis. The photophysical properties were well
established by a UV—visible diffuse reflectance spectroscopy
(UV—vis DRS) analysis. A Mott—Schottky (MS) analysis was
executed to investigate the charge carrier characteristics of
fabricated samples. The nature of the exciton separation over
the photocatalysts was well exposed by photoluminescence
(PL), electrochemical impedance spectroscopy (EIS), carrier
density, linear sweep voltammetry (LSV), and Bode analysis.
The microstructures, surface morphologies, existence of {040/
110} facet isotype heterojunctions, and relative facet exposure
factors of the fabricated samples were well observed by field
emission scanning electron microscopy (FESEM) analysis.
Transmission electron microscopy (TEM) and high-resolution
transmission electron microscopy (HRTEM) analyses were
carried out to validate the {040/110} facet isotype
heterojunction provoked exciton separation process. A
comparative investigation on the effective association among
physicochemical and electrochemical properties, {040/110}
crystal facet isotype heterojunctions, and relative exposure
factors of oxidation—reduction facets toward the superior
photocatalytic redox efficiency of BiVO, was neatly ascertained
and discussed.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Reagents. Analytical grades of bismuth
nitrate pentahydrate (Bi(NO;);-SH,0, 99%), ammonium metavana-
date (NH,VO;, 99%), urea (CO(NH,),, 99%), ammonium hydroxide
(NH,OH, 28-30%), nitric acid (HNO;, 69%), and silver nitrate

(AgNO;, 99%) from Merck were used without any additional
refinement for material fabrication. Double-distilled deionized water
(DI-H,0) was used throughout the experiments. Analytical grade
ethanol (C,H;OH, 99.9%) was used for washing.

2.2. Fabrication of Hierarchical Microstructures of BiVO,.
About 20 mmol of Bi(NO,);-SH,0 and 20 mmolof NH,VO; were
added to each of three distinct beakers containing 165 mL of 2 M
dilute HNO; (SOL-A), 160 mL of 2 M dilute HNO; (SOL-B), and
106 mL of 1 M dilute HNO; (SOL-C). The SOL-A was stirred for 2 h
magnetically until a homogeneous yellow solution was obtained
followed by slow addition of NH,OH until pH 9. The precipitate that
formed was washed (H,0, C,H;OH) and dried in a hot air oven (70
°C, 24 h). The product was then finely ground followed by calcination
at 500 °C for S h (10 °C/min). The sample was collected and
assigned the name BiVO,-C. The pH of SOL-B was adjusted to 2.
The suspension that formed was then aged (2 h) followed by
hydrothermal treatment of the bottom yellow precipitate (200 °C, 24
h). The product that formed was washed (H,0, C,H;OH), dried in a
hot air oven (70 °C, 24 h), and assigned the name BiVO,-H. SOL-C
was stirred followed by slow addition of 10 g of CO(NH,),. The
suspension was refluxed (84 °C, 24 h). The precipitate that formed
was then washed (H,0, C,H;OH), dried in a hot air oven (70 °C, 24
h), and assigned the name BiVO,-R. All of the fabricated samples

were collected and ground well for further characterizations (Scheme
1).1127,32,33

Scheme 1. Illustration of Diverse Fabrication Techniques
for Hierarchical Microstructures of Monoclinic Scheelite
BiVO, Samples
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2.3. Fabrication of Ag-BiVO,-R. The successful deposition of Ag
nanoparticles over the BiVO,-R sample was carried out via a
photodeposition technique. In brief, 300 mg of the BiVO,-R sample
was well dispersed in 35 mL of a DI-H,0/methanol mixture (4/1) via
ultrasonication for 30 min. Subsequently, 3.3 mL of an AgNO,
aqueous solution (10 g L™') was added dropwise to the above
suspension with stirring for 30 min followed by visible-light irradiation
for 2 h by a 300 W Xe lamp. The resulting suspension was then
collected, washed (DI-H,O, ethanol), dried in a hot air oven (60 °C
for 12 h), and assigned the name Ag-BiVO,-R. The fabricated
yellowish green Ag-BiVO,-R sample was collected and ground well for
further characterizations.””’

2.4. Analytical Characterizations. Crystallographic features
were cautiously examined in a Rigaku Ultima IV X-ray diffractometer
(CuKa, 1 = 1.5 A, 20 = 10—80°, 5° min~", 40 kV, 40 mA). A Zeiss
Supra 55 field emission scanning electron microscope was employed
to examine the microstructure and surface morphological information.
Photophysical investigations were retrieved from a JASCO 750 UV—
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visible diffuse reflectance spectrometer (BaSO, reference). Photo-
luminescence spectra were precisely examined by deploying a JASCO
FP8300 spectrofluorometer (4., = 325 nm). A JASCO FT/IR-4600
Fourier transform infrared spectrometer was utilized to neatly analyze
the bond vibrational chemistry (KBr matrix). Transmission electron
microscopy and high-resolution transmission electron microscopy was
carried out to study the surface morphology, deploying a Philips
Tecnai G2 instrument (200 kV). The surface chemical characteristics
of fabricated materials were investigated by a VG Microtech Multilab
ESCA 3000 XPS instrument (Al Ka, 1486.7 eV, C 1s 284.9 eV).

2.5. Electrochemical Measurements. An IVIUM n STAT
electrochemical workstation with a conventional three-electrode Pyrex
electrochemical cell (working electrode Pt, Ag/AgCl, 0.1 M Na,SO,,
pH 6.1) was employed to examine photoelectrochemical data.
Working electrodes were fabricated by an electrophoretic deposition
method in a 20 mL acetone dispersion of 20 mg of the photocatalyst
and 20 mg of iodine. The coating surface areas of FTOs (fluorine-
doped tin oxide) were maintained to 1 cm X 1 cm under a controlled
potentiostatic bias (60 V, S min). Linear sweep voltammetry (LSV,
—1 to +1 V) analysis, electrochemical impedance spectroscopy (EIS,
0.1—10000 Hz, 0.63 V amplitude, 0 bias), and Bode measurements
were executed under visible-light irradiation (300 W xenon, cut off
filter >400 nm). The Mott—Schottky analysis was carried out in the
dark (500 Hz, 25 mV). No photoresponse was observed for FTO
without a catalyst coating. The photocurrent steadiness was measured
by chronoamperometric (CA) analysis (600 s, 0.6 V). Transient
photocurrent measurements were carried out under chopped visible-
light illumination (300 s, 0.6 V).

2.6. Photocatalytic Levofloxacin Detoxification. A quartz
reactor was employed to examine photocatalytic levofloxacin
detoxification under irradiation of visible light (300 W Xe lamp, 1
> 420 nm, 100 mW/cm?). Before photoirradiation, a suspension of
20 mg of the catalyst in 20 mL of a levofloxacin aqueous solution with
20 mg L™ concentration was stirred magnetically in the dark for 30
min to enable an adsorption—desorption equilibrium. The resulting
suspension was centrifuged and analyzed in a UV—vis spectrometer at
288 nm.** 7> The process was repeated at varying reaction times to
evaluate the rate and the reaction kinetics.

2.7. Photocatalytic Water Oxidation Reaction. A sealed quartz
batch reactor (100 mL capacity) with a temperature controller was
employed to examine the water oxidation reaction under visible light
irradiation (300 W Xe lamp, 4 > 420 nm). First a suspension of 20
mg of the catalyst in 20 mL of a 0.05 M AgNOj; aqueous solution was
purged with nitrogen for 30 min preirradiation at room temperature.
The source was maintained 10 cm away from the suspension. A
molecular sieve (5 A) column GC-17A gas chromatography
instrument with a thermal conductivity detector (TCD) was
employed to characterize evolved O,.

3. RESULTS AND DISCUSSION

FESEM and HRTEM analyses were carried out to better
investigate the microstructure and surface morphology of the
fabricated samples (Figure 1). As shown in Figure la, the
pristine BiVO,-C appears to have a dense microspherical
structure composed of irregular-polyhedral crystals.'"”** The
minuscule pores near the junction of nanopolyhedral structures
in the microstructures are ascribed to gas amputation during
the calcination process. The irregular Anonna reticulate shaped
microstructures have an average particle size of 3.4—9.6 um.
The resultant TEM image of the fabricated BiVO,-C sample
exhibits a microspherical morphology with a well-defined
outline, which is in good agreement with the FESEM results
(Figure 1b). Furthermore, a high-resolution FESEM image of
BiVO,-H (Figure 1c) shows a truncated-bipyramidal morphol-
ogy with a smooth surface and two {040}, four {110}, and four
{011} well-exposed facets.””~>*** The average particle size of
BiVO,-H was evaluated to be 1.5—4 um. The respective TEM

Figure 1. Respective FESEM and TEM images of fabricated
monoclinic scheelite (a, b) BiVO,-C, (¢, d) BiVO,-H, and (e, f)
BiVO,-R samples.

image of the BiVO,-H sample (Figure 1d) illustrates a
truncated-bipyramidal morphology with well-defined outlines
analogous to the respective FESEM images. Figure le
represents the FESEM image of the BiVO,-R sample.
Microparticles with a truncated-bipyramidal shape with two
{040}, four {110}, and four {011} highly exposed facets are
well observed.””>*** The approximate average particle size
was calculated to be 1.5—5 um. Expectedly, an analogous
truncated-bipyramidal morphology with well-defined outlines
was also observed for the BiVO,-R sample (Figure 1f).

The exposure of various {040}, {110}, and {011} facets
affecs the exciton separation ability and thus affects the overall
redox efficiency of the photocatalysts. The {040} facet is
composed of a BiV, multiatomic center, while the {110} and
{011} facets are composed of Bi,V,, thus suggesting analogous
characteristics of {110} and {011} exposed facets.”> The drift
velocity of photoexcited electrons over the {040} facet was
reported to be greater than that of the {110} facet due to the
lower effective mass of electrons.””**°%%*% Moreover, the
densities of states near the valence band maximum (VB,,,)
and conduction band minimum (CB,,;,) of {011} is more
localized in comparison to those for the {040} facet.””*%*%*
Furthermore, lower band edge potentials of the {040} facet in
comparison to the {110} facet favors thermodynamic exciton
separations over the exposed facets of inbuilt {040/110} facet
isotype heterojunctions.””*>** Consequently, photoexcited
electrons tend to move over {040} reduction facets while
causing the accumulation of photogenerated holes over {110}
oxidation facets, thus promoting the development of built-in
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{040/110} facet isotype heterojunctions over BiVO,-H and
BiVO,-R samples.””***>3337

In addition, the relative {040} facet exposure percentage of
fabricated materials were well-evaluated via a slab-equilibrium
model analysis (Scheme 2) to better validate the effective

Scheme 2. Schematic Illustration of the Slab-Equilibrium
Model of a Monoclinic Scheelite BiVO, Single Crystal

involvement of the exposure ratio toward enhanced
activity.”” ™' As illustrated in Figure 1, the BiVO,-C
microstructures show no obvious high exposure of {040},
{110}, and {011} active functional facets. However, BiVO,-H
and BiVO,-R exhibit well-exposed {040} facets with an average
exposure values of 14% and 36%, respectively, thus validating a
higher exposure factor of the {040} facet ({040}/{110}) in
BiVO,-R in comparison to BiVO,-C and BiVO,-H. This is
further explored in the discussion below.

The theoretical assessment of {040} facet exposure
39—41

Afo40) (%) =

A{040} (%) =

1, 1,

, 15t 1 5°
2aa’ + 4{->—b - -2—a

2 cos x 2 cos x

X 100

percentage was carried out by employing the equations
A{040} = 2aa’ (1)
A 4( ! OF X b 1OB X )
=4 - - = a
{110} > > @)
1 ! 1 !
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Aoso) (%) = fod} X 100
Aqosoy T Aprioy T Ajorny 4)
2aa’
: X : : X 100
{Zaa +4(;0F x b = 0B x a) + 4(30E x b —EOCXa)} )
aa’
Atowoy (%) = 1 1 1
{aa +E(bb —aa)(cosx + Cosy)}
X 100 7)

Here, A4y A(110p and Aggyyy denote the exposure areas of
{040}, {110}, and {011} functional facets of the BiVO, {040/
110}Hacet isotype heterojunction, respectively. a and a’ signify
the length and width of the well-exposed {040} facet,
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Figure 2. Comparative (a) X-ray diffraction patterns and (b) FT-IR spectra of fabricated monoclinic scheelite BiVO, samples.
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Figure 3. Comparative XPS analysis overview: (a) survey spectrum and (b) Bi 4f, (c) V 2p, and (d) O 1s narrow scan spectra of fabricated

monoclinic scheelite BiVO, samples.

respectively. b and b’ signify the length and width of the
truncated bipyramid, respectively. x (~66.06°) and y
(~66.48°) are the theoretical inclinations of {110} and
{011} facets to the {040} facet, respectively.

Powder XRD analysis providing particulars of crystallo-
graphic features of the as-synthesized catalysts are shown in
Figure 2a. The elemental diffraction peaks of the pristine
BivO,-C, BiVO,H, and BiVO,R are well indexed with a
body-centered monoclinic scheelite phase of BiVO, with
JCPDS Card No. 00-014-0688.'"*"~**3»%> The obtained
diffraction spectra were devoid of any ancillary impurity
peaks, suggesting high purity of the catalysts. Furthermore, the
decidedly crystalline characteristics of the pristine synthesized
samples were well established by the sharp and intense
diffraction signals.

Moreover, the crystallite sizes of the as-synthesized pristine
materials were estimated to be 38.88, 64.59, and 64.09 nm for
BiVO,-C {112}, BiVO,H {-121} and BiVO,R {-121},
respectively, by employing the Scherrer equation (eq 8):'"*°

(8)

Here, 4, p, and 0 denote the irradiation wavelength, half-
maximum peak width, and diffraction angle of the diffraction
peak under inspection, respectively. Moreover, k denotes the
Scherrer constant with a value of 0.94. It is worth noting that
the intensities of characteristic diffraction signals of the
fabricated samples follow the order BiVO,-C {-121} <
BiVO,-R {—121} < BiVO,-H {—121}. However, the {040}/

crystallite size (D) = kA/f cos 0

10332

{110} diffraction signal intensity ratio is shown to be elevated
in BiVO,-R relative to BiVO,-C and BiVO,-H, suggesting
superior growth of BiVO, crystals vertical to the {110}
facets.” This was further attested by FESEM analysis.
Moreover, a minor variation in fwhm value was observed,
which suggests the existence of a minor distortion of the
[VO,™*] tetrahedron in the local structure.*®

Furthermore, broad and readily distinguishable characteristic
vy stretching vibrational absorption spectra were observed in
the range of 1000 to 500 cm™" in FT-IR analyses of fabricated
BiVO, samples (Figure 2b). The characteristic signals at
around 739 and 838 cm ™! are well-attributed to v3 asymmetric
and v, symmetric stretching vibrational modes of the VO,*~
unit, respectively.42 Moreover, a weak signal around 474 cm™!
was observed and ascribed to the v, bending vibrational mode
of VO,*~.* This is in good agreement with the monoclinic
scheelite phase of BiVO, samples.

Furthermore, the valence band of monoclinic scheelite
BiVO, is reported to be composed of Big, and O,, hybrid
orbitals, while the conduction band is composed of a V4
orbital.'""** The existence of distortion of the VO,>~
tetrahedron in the local structure along with superior
crystallinity is responsible for escalating the overlap of Big,
and O,, orbitals of monoclinic scheelite BiVO,. This
consequently enhanced the photoexciton delocalization
process and enhanced the migration of photogenerated holes
to the surface, accordingly resulting in a superior water
oxidation reaction.”*”® Thus, when the X-ray diffraction facts
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Figure 5. (a) UV—vis absorption spectrum of levofloxacin undergoing photodetoxification, (b) detoxification over time, (c) kinetics of
detoxification, and (d) cyclic reusability measurements over fabricated monoclinic scheelite BiVO, samples.

are taken into account, the higher crystallinity of BiVO,-H
attests to its superior photocatalytic redox activity over BiVO,-
R and BiVO,-C sequentially. This was further supported by the
crystallite sizes of fabricated catalysts. The larger crystallite size
of BiVO,-H suggests a higher photocatalytic activity in
comparison to BiVO,-R and BiVO,-C.***°

XPS measurements of fabricated hierarchical structures of
the BiVO, material were carried out to thoroughly investigate
the surface elemental composition and valence states (Figure
3). The XPS survey spectrum of fabricated BiVO, materials
illustrates the presence of Bi, V, and O devoid of any
adulteration (Figure 3a). The appearance of an intense XPS
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signal of C near 284.9 eV was readily attributed to the
adventitious hydrocarbon.""'” Two prominent XPS signals are
observed for Bi 4f narrow scan spectrum for the fabricated
BiVO,-C (159.12, 164.42 eV), BiVO,-H (159.14, 164.42 V),
and BiVO,-R (159.17, 164.46 €V) materials. The observed
binding energy differences of 5.3, 5.28, and 5.29 eV are due to
the respective Bi 4f,/, and Bi 4f;,, spin—orbit splitting and +3
state of the Bi atom (Figure 3b).'""? The characteristic spin—
orbit splitting of V 2p;,, and V 2p,,, were observed for
fabricated BiVO,-C (516.51, 523.77 eV), BiVO,-H (516.51,
523.93 V) and BiVO,-R (516.52, 523.75 eV) materials with
binding energy differences of 7.26, 7.42, and 7.23 eV,
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Figure 6. Comparative (a) O, evolution and (b) cyclic reusability measurements over fabricated monoclinic scheelite BiVO, samples.

respectively, ascribed to the +5 valence state of the vanadium
atom (Figure 3c).'"'” Moreover, the O 1s XPS spectra of
fabricated BiVO,-C (529.57, 531.28 eV), BiVO,-H (529.59,
531.34 eV), and BiVO,-R (529.59, 531.28 eV) materials
illustrate a pair of intense signals corresponding to lattice
oxygens of Bi—O and V—O bonds (lower BE energy) and
hydroxyl oxygen (—OH) (higher BE energy) (Figure 3d).”
The results illustrate the existence of a BiVO, material with a
monoclinic scheelite crystalline phase.

The strong optoelectronic response of the pristine BiVO,
catalysts with strapping (strong) absorption characteristic in
visible region was well exposed by UV—vis diffuse reflectance
spectroscopy (Figure 4a). The observed absorption edges were
devoid of significant differences with approximate values of
nearly 551-554 nm for BiVO,-C, BiVO,-H, and BiVO,-R,
respectively, with a trifling red shift of BiVO,-C in comparison
to the other pristine catalysts.”” The observed absorption
characteristics were consistent with the closely analogous
colors of fabricated (i) BiVO,-C, (ii) BiVO,H, and (iii)
BiVO,-R samples (Figure 4a, inset). Moreover, the absorption
edges were projected to originate from respective optical band-
gap transitions rather than from any impurity levels. The close
band-gap values were estimated by implementing eq 9:'"'**

ahy = A(hv — Eg)"/2 (9)
Here, @, h, A, v, and E, denote the absorption coefficient,
Planck’s constant, the proportionality constant, light frequency,
and band-gap energy, respectively. The value of n was adopted
as 1 for the direct transition natures of fabricated samples.' "'
The probable close band-gap energies were observed to have
no apparent divergences and evaluated to be 2.37 eV for
BiVO,-C, BiVO,-H, and BiVO,-R respectively (Figure 4b),
which are in accordance with the absorption analysis and
previous reports.'”** Moreover, the light-harvesting efficiency
was proposed to have no effective association toward the
diverse photocatalytic efliciencies of fabricated shape-selective
BiVO, materials.

Furthermore, a comparison of the photoredox efficiencies of
the fabricated catalysts were investigated by performing
degradation of an organic deleterious waste levofloxacin
(CysH,0FN;0,) aqueous solution over 120 min of visible
light illumination. For a comparative illustration commercial-
grade Degussa P25 was also introduced. A drastic decrease in
the respective signal intensities for aromatic (288.38 nm) and
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piperazine (330.85 nm) rings in the UV—vis absorption
spectrum evidenced the photocatalytic degradation process
(Figure Sa, inset).””*” Negligible detoxification results were
observed for Degussa P25, while roughly no degradation was
observed for a solution lacking a catalyst (photolysis). The
degradation percentages of levofloxacin were evaluated to be
42.3%, 60.4%, and 71.2% for BiVO,-C, BiVO,-H, and BiVO,-
R, respectively. Moreover, the detoxification was well observed
by employing a pseudo-first-order kinetic model (Figure Sb,c)
andl lt}117e detoxification rate constant was evaluated adopting eq
10:°

In(C/C,) = —kt (10)

Here, C, C,, k, and t denote the final concentration, the initial
concentration, the rate constant, and the reaction time,
respectively. A higher rate constant for BiVO,-R (0.0104
min~"') was apparent, which is 1.35- and 2.24-fold superior to
those of the fabricated BiVO,-H (0.0077 min~"') and BiVO,-C
(0.0046 min™") samples.

Cyclic reuses of fabricated BiVO, hierarchical micro-
structures were carried out to investigate the apparent
photostability and recyclability (Figure Sd). The detoxification
was observed to be consistent up to four consecutive cycles
with minimal deteriorations of 1.82%, 1.86%, and 2.03% in the
fifth cycle for BiVO,-C, BiVO,-H, and BiVO,-R, respectively,
ascribed to the wear and tear of the catalyst surface and
inexiilt:ilgez losses during the intermediary recovery proc-

ss.

In addition, photocatalytic oxygen evolution efficiencies of
fabricated samples were carried out in AgNO; aqueous
solution under visible-light illumination for 120 min. Expect-
edly, BiVO,-R illustrated an elevated water oxidation efficiency
of 530.6 pmol, which was about 1.22 and 1.07 times those of
BiVO,-C (434.2 umol) and BiVO,-H (494.8 umol),
respectively (Figure 6a). Cyclic reuses of the fabricated
hierarchical BiVO,-R sample showed significant steadiness up
to three successive cycles followed by deteriorations of 1.64%,
1.58%, and 1.62% in the fourth cycle for BiVO,-C, BiVO,-H,
and BiVO,-R, respectively. The inconsistency observed was
ascribed to the wear and tear of the catalyst surface over the
reaction period. Moreover, the inescapable metallic Ag cluster
deposition owing to photoreduction of Ag" ions over the
catalyst surface consequently hinders visible li§ht penetration,
thus retarding the activity (Figure 6b).""'>** The diverse
photocatalytic response was credited to varied photo electron—

https://dx.doi.org/10.1021/acs.inorgchem.0c01465
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Figure 7. (a) PL, (b) EIS, (c) carrier density, and (d) transient photocurrent responses of fabricated monoclinic scheelite BiVO, samples.

hole anti-recombination processes occurring in the crystal
microstructures and was well-explored via photoelectrochem-
ical measurements.

Moreover, a detailed investigation regarding photoexciton
separation, migration, and recombination in the fabricated
materials was well established via PL analysis (4, = 325 nm,
room temperature). As shown in Figure 7a, the broad PL
spectra of the fabricated catalysts are centered at 536 nm and
are ascribed to the corresponding band-gap emissions.'"”’
Expectedly, PL intensities of the catalysts had minimal
differences. Nevertheless, BiVO,-R has a comparatively lower
PL intensity followed by BiVO,-H and BiVO,-C, suggesting
lower charge carrier recombination rates.'”>” This was further
corroborated by the electrochemical impedance analysis shown
in Figure 7b. The exposed characteristic semicircular Nyquist
plots validate the occurrence of exciton separation and transfer
in fabricated samples.'"*> Moreover, a comparatively low
frequency and smaller arc radius confirms an effective decrease
in interfacial charge transfer resistance (R.) in the fabricated
BiVO,-R microstructure in comparison to the pristine BiVO,-
C and BiVO,H. However, the variation was minimal in
comparison to BiVO,-H. The fitted Randle circuit model
further validates a notable decrease in charge transfer
resistance over the electrode—electrolyte interface of BiVO,-
R (11620 Q cm™) relative to BiVO,-C (17640  cm™) and
BiVO,-H (12120 Q cm™) and thus illustrates possible
superior charge carrier migration in architected BiVO,-R
relative to BiVO,-C and BiVO,-H samples. R, and Q_ elements
(Figure 7b, inset) in the equivalent circuit denote series
resistance and capacitance phase elements, respectively.'"***¢
Moreover, a lower positive slope was observed for BiVO,-R
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(1.572 x 10"°) relative to BiVO,-H (2.187 x 10'°) and BiVO,-
C (2.628 X 10') sequentially (Figure 7c). This further
indicates a higher carrier density (N;) and thus elevated
electrical conductance provoking the superior charge-transfer
characteristics of BiVO,-R in comparison to the fabricated
BiVO,-C and BiVO,-H samples. Moreover, the probable
values of carrier densities (N;) of fabricated BiVO, samples
could be calculated by adopting eq 11:'#67%°

carrier density (N;) = (2/eee,)B (11)
Here, ¢, ¢, £, and B denote the electron charge (1.602 X 107"
C), the relative dielectric constant of the semiconducting
material, the vacuum permittivity (8.85 X 107> F m™"), and
the slope value of MS plot tangents, respectively. Con-
sequently, an increased carrier concentration will lead to
elevated charge-transfer characteristics of BiVO, as per eq
12:>°

electrical conductivity (¢) = eny (12)
Here, ¢, n, and u denote the electronic charge unit (1.602 X
107" C), the charge carrier concentration, and the charge
carrier mobility, respectively.

Moreover, the photoelectrochemical transient measurements
illustrated an enhanced transient photocurrent intensity of
BiVO,-R (Figure 7d). The results were observed to follow the
trend of BiVO,-C < BiVO,-H < BiVO,-R for each consecutive
on—off cycle, suggesting an improved exciton pair separation
tendency and surface charge antirecombination process over
BiVO,-R in comparison to the other pristine materials.'"*>*"
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Figure 8. Comparative (a) LSV and (b) CA analysis responses of fabricated monoclinic scheelite BiVO, samples.

Moreover, linear sweep voltammograms (LSV) exposing a
higher photocurrent density of BiVO,R (145.6 uA/cm?)
relative to BiVO,-C (75.5 uA/cm?*) and BiVO,-H (113.1 uA/
cm?) validates the sturdy charge carrier separation occurring
over BiVO,-R. Nevertheless, a drastic reduction in charge
carrier recombination was validated by a notable negative shift
in onset potential for BiVO,-R (—0.33 V) in comparison to the
fabricated BiVO,-C (—0.013 V) and BiVO,-H (—0.11 V).*!
The result is in good agreement with PL, impedance, carrier
density, and transient photocurrent analysis (Figure 8a).

The time-variant photocurrent steadiness of the fabricated
BiVO, materials was investigated by chronoamperometric
analysis (Figure 8b). Expectedly, BiVO,-R illustrated an
enhanced CA current of 7.9 pA with consistency up to 600
s. Following a minimal decay of 25.2% initially, there was no
noticeable photocurrent loss observed over time, suggesting an
enhanced electron lifetime in the BiVO,-R sample in
comparison to BiVO,-C and BiVO,-H. Moreover, the
measured CA results followed the trend BiVO,-C (42%, 4.52
uA) < BiVO,-H (28%, 6.7 uA) < BiVO,-R. The diverse
photoelectrochemical responses were quite consistent with the
observed photocatalytic outcomes.

Furthermore, a Bode analysis was executed to better
understand the hole relaxation efficiencies of fabricated
samples. A relatively positive shift of the frequency phase
peak of BiVO,-H in comparison to BiVO,-R and BiVO,-C as
projected in Bode plots reveals a decrease in hole separation/
relaxation lifetime (TP) for BiVO,-H in comparison to the
other pristine phases (Figure 9). Moreover, the entire
separation/relaxation lifetimes in the fabricated BiVO, samples
were evaluated to be 0.91, 0.48, and 0.61 ms for BiVO,-C,
BiVO,-H, and BiVO,-R, respectively, adopting eq 13:>' >

hole relaxation lifetime (Tp) = 1/2xf (13)

Here, f denotes the relaxation frequency obtained from the
maximum value allied with the Bode frequency range. A
decrease in hole relaxation lifetime suggests a decrease in hole
diffusion length (Lp) and thus a rapid hole diffusion process.
The diffusion lengths were evaluated to be 2.17, 1.57, and 1.78
um for BiVO,-C, BiVO,-H, and BiVO,R, respectively,
adopting eq 14:>' 7%

hole diffusion length (L) = (DTP)I/2 (14)
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Figure 9. Bode analysis results of fabricated monoclinic scheelite
BiVO, samples.

Here, D connotes the hole diffusion coefficient with a value of
5.2 X 107 cm* s71.** A reasonably lower hole diffusion length
of BiVO,-H (1.57 ym) in comparison to BiVO,-C (2.17 ym)
and BiVO,-R (1.78 um) was observed, suggesting a superior
hole consumed water decomposition reaction of BiVO,-H
relative to BiVO,-R and BiVO,-C sequentially.”*~*° This was
further supported by crystallographic parameters and com-
paratively higher amounts of exposed {110} oxidation facets of
the BiVO,-H sample.”"*” However, the constructive effects of
the {040/110} facet isotype heterojunction and exposure ratio
of various reduction—oxidation facets of monoclinic scheelite
BiVO, were investigated to regulate the overall efficiencies of
the catalysts.

As revealed by FESEM and TEM analysis, the fabricated
BiVO,-C is devoid of any good exposure extent, while BiVO,-
H and BiVO,-R samples have well-exposed {040} reduction
and {110} oxidation facets and built-in {040/110} facet
isotype heterojunctions.”” ">’ With no perceptible exposed
redox facets, BiVO,-C suffers rapid exciton recombination
(Scheme 3a). As revealed from XRD, FESEM, and TEM
analysis, the {040/110} exposure factor in BiVO,-H is
noticeably lower relative to BiVO,-R. Reasonably more
exposed and energetically favorable water oxidation {110}
facets suggest higher hole provoked efficiency of BiVO,-H;

however, recombination occurring due to trapped electrons
owing to minor exposed {040} facets decrease the activity
10336 https://dx.doi.org/10.1021/acs.inorgchem.0c01465
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Facet Isotype Heterojunctions and (c) Mechanistic Pathway of Exciton Separation over a BiVO,-R {040/110} Facet Isotype
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(Scheme 3b).”" Moreover, a higher {110} facet exposure
causes an electron overflow effect provoked retardation of
electron transfer to the {040} facet and thus validates the
existence of interior exciton pair recombination.*”

In contrast, highly exposed {040} facets have been reported
to possess a superior water molecule adsorption efficiency due
to the promotion of the local bonding configuration along with
the presence of multiatomic BiV, centers responsible for
electron transfer for water oxidation (Scheme 3c).*”*° Thus,
an increase in the relative exposure factor of {040} facet
({040}/{110}), i.e. a greater exposed {040} exposure
percentage, possesses a constructive effect toward exciton
separation and anti-recombination processes over {040/110}

facet isotype heterojunctions and hence superior photocatalytic
activity.”****® Consequently, the phenomenon results in an
enhanced effective separation of photoexcitons and redox
efficiency over BiVO,R in comparison to BiVO,-H and
BiVO,-C, which is in good agreement with the results of
photocatalytic and photoelectrochemical measurements.
Furthermore, the inbuilt {040/110} facet isotype hetero-
junction provoked augmented accumulation of photoelectrons
over the {040} reduction facet of BiVO,-R was further
evidenced by introducing Ag nanoparticles via a photo-
deposition method. A powder XRD spectrum of the Ag-
BiVO,-R sample shows the existence of {111} and {200}
crystal plane reflections (JCPDS 00-001-1167), which suggests

https://dx.doi.org/10.1021/acs.inorgchem.0c01465
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Figure 10. (a) XRD, (b) TEM, and (c) HRTEM results of the fabricated Ag-BiVO,-R sample.

successful integration of metallic Ag with the BiVO,-R sample
(Figure 10a). A low-magnification TEM image of Ag-BiVO,-R
illustrates the augmented deposition of Ag nanoparticles over
the {040} crystal facet of BiVO,-R (Figure 10b). An observed
interplanner spacing (d) of 0.233 nm was allied with the
reflection of the {111} plane of metallic silver nanoparticles
(Figure 10c). The deposition was ascribed to rapid-selective
photoreduction of Ag' particles to Ag’ via augmented
photoelectrons accumulating over the {040} reduction facet
of the BiVO,-R {040/110} facet isotype heterojunction. The
possible mechanistic pathway for the photodeposition is as

27,29,30
follows:>">*

{040/110}-BiVO,-R + hv
— {040}-BiVO,-R e” + {110}-BiVO,-R h" (15)

{040}-BiVO,-Re” + Ag™ — Ag’-{ 040}-BiVO,-R  (16)

A Mott—Schottky analysis was adopted to evaluate the
probable conduction band edge potentials and charge-transfer
characteristics of the fabricated monoclinic scheelite BiVO,
samples (Figure 11a). The probable flat-band potentials (Eg)
were calculated to be —0.71, —0.68, and —0.63 V vs Ag/AgCl
for BiVO,-C, BiVO,-H, and BiVO,-R, respectively, from the x
intercept of the extrapolated linear region of the C™* versus
potential plot employing eq 17.°° Moreover, the relatively

positive shift in the flat band potential of BiVO,-R suggests a
minor electron-trapping process and thus an effectual lowering
of photoelectron diffusion length from the bulk to the well-
exposed {040} surface.’’

1/C* = (2/eeegN))[E — Eg — (KT /e)] (17)

Here, C, ¢, €, €y, Ny, E, and Eg, denote the charge capacitance
of free space, the charge of the elementary electron, the
dielectric constant of the electrode material, the permittivity of
free space, the electron donor density, the applied bias
potential, and the flat band potential, respectively. Moreover,
n-type characteristics of fabricated monoclinic BiVO, materials
were well attested from positive slopes in the MS plot and
probable conduction band (CB) values were calculated to be
—0.15, —0.12, and —0.07 eV vs NHE for BiVO,-C, BiVO,-H,
and BiVO,-R, respectively. The result was due to the fact that
Eq of n-type materials gives an approximation of the
conduction band minimum.'"””” Nevertheless, the valence
band (VB) edges were evaluated to be 2.22, 2.25, and 2.30 eV
vs NHE for BiVO,-C, BiVO,-H, and BiVO,-R, respectively,
adopting eq 18:°°
Ecp = Evp — E (18)
Here, Ecy, Eyp, and E, denote the CB minimum, VB
maximum, and band-gap energy, respectively. The relative
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Figure 11. (a) Mott—Schottky, (b) active radical measurement, and (c) TA plots of fabricated monoclinic scheelite BiVO, samples.

variations in band edge potential (CB and VB) values of
fabricated BiVO, materials are due to diverse facet exposure
factors, as the surface atomic coordinations and arrangements
of different exposed facets are different.”” The evaluated
probable near band edge structures of the fabricated samples
with relative potentials of various components accountable for
photocatalytic redox reactions are shown in Scheme 4.

Scheme 4. Schematic Illustration of near Possible Band
Structures of Fabricated Monoclinic Scheelite BiVO,
Samples

.0,/°0,"= - 0.046 eV

Ag'/Ag=+0.779 eV
H,0/0,=+1.2 eV

OH-/'OH = +1.99 eV

+2.22 eV +2.25 eV +2.30 eV

BiVO,-C

BiVO,-H BiVO,-R

Moreover, the effective association of various active radicals
and thus possible inherent mechanistic pathways involved in
the detoxification process of levofloxacin were elucidated via
sequential scavenging experiments. In the present investiga-
tion, h*, OH, and O, active species are well trapped via the
1ntroduct10n of methanol (MeOH), isopropyl alcohol (IPA),
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and p-benzoquinone (p-BQ) as scavenging agents, respectively
(Figure 11b)."""*** As was observed, all three BiVO, samples
with hierarchical morphologies demonstrate analogous out-
comes. The detoxification was strappingly (strongly) hindered
upon scavenging h* and grounds (results) a lowering of
detoxification to 23, 24, and 28% associated with BiVO,-C,
BiVO,H, and BiVO,-R, respectively. Moreover, scavenging
OH radicals significantly decreases the degradation to 27, 32,
and 36% associated with BiVO,-C, BiVO,-H, and BiVO,-R,
respectively. However, ‘O,” makes a relatively lower con-
tribution toward the degradation process and this is well-
observed from a comparatively poorer decrease in degradation
to 31, 42, and 53% for BiVO,-C, BiVO,-H, and BiVO,R
respectively. The results illustrate the involvement of each of
the active radicals in the degradation process of LVF with a
crucial contribution of h* and OH radicals. Moreover, a
significant association of OH radical was further validated from
the considerable increase in PL intensity owing to the
transformation of terephthalic acid (TA, 423 nm) to
fluorescent hydroxyterephthahc acid (HTA) by the excess
OH radicals produced.”’ The results follow the trend BiVO,-C
< BiVO,-H < BiVO,R, suggesting enhanced exciton pair
separation over the BiVO,R sample (Figure 11c).°" The
results were in good agreement with the band configurations of
fabricated samples and previous reports (Scheme 4).>*73%%!
In this context, a credible mechanistic pathway was
projected to better explain the photoredox phenomenon over
BiVO,-R. The inherent {040/110} facet isotype heterojunc-
tion promotes the augmented accumulation of photoexcited
electrons over {040}-BiVO,-R with a lower conduction band

https://dx.doi.org/10.1021/acs.inorgchem.0c01465
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potential and photogenerated holes over {110}-BiVO,-R with
a lower valence band potential, respectively.zg’z‘3 Meticulously,
the holes over the BiVO,-R {110} facet actively oxidize OH™
to produce an *OH radical (OH /*OH = +1.99 eV), while
electrons over the BiVO,-R {040} facet react with dissolved O,
to produce the *0,” radical (0,/°0,” = —0.046 eV). The h*,
*OH, and *O," radical subsequently instigate the detoxification
of levofloxacin (Scheme 3¢-1).**** On the other hand, the
excess electrons over the BiVO,-R {040} facet with high
reduction potential actively reduce Ag® to form metallic Ag
(Ag'/Ag’ = +0.779 eV). Consequently, the active holes over
the BiVO,-R {110} facet rapidly oxidize H,O to O, (H,0/0,
= +12 V) (Scheme 3c-II).'""*
(I) Possible levofloxacin degradation pathway:

{040/110}-BiVO,-R + hu,,

— {040}-BiVO,-Re” + {110}-BiVO,-R K" (19)
{040}-BiVQ,-Re™ + O, — 0O, (20)
{110}-BiVO,-Rh" + OH™ — *OH (21)
h" + LVF — degradation product (major) (22)
*OH + LVF — degradation product (major) (23)
*0,” + LVF — degradation product (24)

(I1) Possible water oxidation pathway:

{040/110}-BiVO,-R + hu,

— {040}-BiVO,-Re” + {110}-BiVO,-R K" (25)
AgNO, + hyz, — Ag" + NO;~ (26)
{040}-BiVO,-Re” + Ag" — {040}-BiVO,-R + Ag’

(27)
{110}-BiVO,-R K" + H,0
— {110}-BiVO,-R + O, + H* (28)

4. CONCLUSION

In summary, highly crystalline hierarchical microstructures of
monoclinic scheelite BiVO, were fabricated via varied synthetic
courses and were well established by analytical character-
izations. An Annona reticulate-shaped BiVO, was obtained by
a calcination (BiVO,-C) treatment, while truncated bipyr-
amidal morphologies with inbuilt {040/110} facet isotype
heterojunctions were achieved by hydrothermal (BiVO,-H)
and reflux (BiVO,-R) treatments. The photocatalytic redox
efficiencies of the fabricated microstructures of BiVO, were
well investigated over levofloxacin detoxification and the water
oxidation reaction and actively compared. Superior exciton
separation promoted enhanced photoactivity over the BiVO,-R
sample was exposed. The enhanced photoexciton anti-
recombination phenomenon was attributed to (i) well-exposed
{040} reduction facet and {110} oxidation facet promoted
facet isotype heterojunction formation and (ii) a high exposure
percentage of {040} reduction facets of BiVO,-R. The effect of
physicochemical features, photoelectrochemical properties,
{040/110} facet isotype heterojunctions, and relative exposure
factors of oxidation—reduction facets toward the superior

photocatalytic redox activity of BiVO, was well established.
The findings are strongly promising and captivating toward the
development of morphology and relative reduction—oxidation
facet exposure factor selective fabrication of facet isotype
heterojunction based materials for superior visible-active
semiconductor photocatalysis.
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